Human balancing of an inverted pendulum with a compliant linkage: neural control by anticipatory intermittent bias.

نویسندگان

  • Martin Lakie
  • Nicholas Caplan
  • Ian D Loram
چکیده

These experiments were prompted by the recent discovery that the intrinsic stiffness of the ankle is inadequate to stabilise passively the body in standing. Our hope was that showing how a large inverted pendulum was manually balanced with low intrinsic stiffness would elucidate the active control of human standing. The results show that the pendulum can be satisfactorily stabilised when intrinsic stiffness is low. Analysis of sway size shows that intrinsic stiffness actually plays little part in stabilisation. The sway duration is also substantially independent of intrinsic stiffness. This suggests that the characteristic sway of the pendulum, rather than being dictated by stiffness and inertia, may result from the control pattern of hand movements. The key points revealed by these experiments are that with low intrinsic stiffness the hand provides pendulum stability by intermittently altering the bias of the spring and, on average, the hand moves in opposition to the load. The results lead to a new and testable hypothesis; namely that in standing, the calf muscle shortens as the body sways forward and lengthens as it sways backwards. These findings are difficult to reconcile with stretch reflex control of the pendulum and are of particular relevance to standing. They may also be relevant to postural maintenance in general whenever the CNS controls muscles which operate through compliant linkages. The results also suggest that in standing, rather than providing passive stability, the intrinsic stiffness acts as an energy efficient buffer which provides decoupling between muscle and body.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing

The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that...

متن کامل

Manually controlled human balancing using visual, vestibular and proprioceptive senses involves a common, low frequency neural process.

Ten subjects balanced their own body or a mechanically equivalent unstable inverted pendulum by hand, through a compliant spring linkage. Their balancing process was always characterized by repeated small reciprocating hand movements. These bias adjustments were an observable sign of intermittent alterations in neural output. On average, the adjustments occurred at intervals of approximately 40...

متن کامل

Application of Neural Networks for Control of Inverted Pendulum

The balancing of an inverted pendulum by moving a cart along a horizontal track is a classic problem in the area of automatic control. In this paper two Neural Network controllers to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state are described. Both controllers are able to learn the demonstrated behavior which was swinging u...

متن کامل

Neural Network Control of an Inverted Pendulum on a Cart

The balancing of an inverted pendulum by moving a cart along a horizontal track is a classic problem in the area of control. This paper describes two Neural Network controllers to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. Both controllers are able to learn the demonstrated behavior which was swinging up and balancing t...

متن کامل

Noise-induced phase transition in the model of human virtual stick balancing

Humans face the task of balancing dynamic systems near an unstable equilibrium repeatedly throughout their lives. The task of inverted pendulum (stick) balancing (Fig. 1a) is an increasingly popular paradigm of studying human control behavior in such situations [1]. In particular, much research has been aimed at understanding the mechanisms of discontinuous, or intermittent control in the conte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 551 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003